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   The natural frequency and damping ratio of the steering system are essential metrics for 
describing its dynamic characteristics. Since the driver rotates the steering wheel by applying 
torque, these metrics are critical for designing a more direct steering feel. They are obtained by 
solving a fourth-order characteristic equation. To achieve a compact representation, a three-step 
procedure has previously been proposed to derive approximate solutions. In this study, an 
alternative formulation is developed based on the known property that the natural frequencies 
are independent of vehicle speed. This property allows the derivation of eigenvalue formulas 
through purely algebraic operations. The resulting process is expected to facilitate clearer 
understanding and enable more precise application of the metrics in designing the dynamic 
behavior of steering systems. 
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1 Introduction 
The natural frequency and damping ratio of a steering 
system serve as key metrics for evaluating its dynamic 
characteristics. Because the driver steers by applying 
torque to the steering wheel, these metrics are essential 
for designing a more direct and responsive handling feel. 
These metrics are derived by solving a fourth-order 
characteristic equation. To obtain a concise 
representation, a three-step procedure has previously 
been used to derive an approximate solution[1]. 
In order to enhance the clarity of the derivation, this 
paper presents a method that utilizes the fact that the 
natural frequencies are independent of vehicle speed. 
Based on this property, an algebraic procedure is 
introduced to derive a closed-form expression for the 
eigenvalues. This clear process is expected to enable a 
more effective use of the metrics in the design of the 

steering system’s dynamic response. 
2. Characteristic Equation 

The motion of the steering system is described by 
Newton's second law[1]. The torque applied by the driver 
to the steering system, denoted as Th, is shown in Fig. 1. 
Another torque acting on the system is the product of the 
trail , acting as a moment arm, and the front cornering 
force 2Ff. The moment of inertia of the steering system 
is denoted as Is, and its typical value is approximately 15 
kg·m². These quantities yield the rotational form of 
Newton's second law:  

 
                    (1) 

 
The cornering forces are obtained from the planar 

motion model of the vehicle shown in Fig. 2. The front 
and rear cornering forces are expressed as:
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Fig. 1 Model of steering system 

 
Fig. 2   Vehicle planar model 

 
 

           (2) 
 

                (3) 
 
where Cf and Cr are known as cornering stiffness 
coefficients[1], with typical values of Cf =100 and Cr =200. 
The masses supported by the front and rear axles, 
denoted as mf and mr respectively, satisfy:  
 

                   (4) 

                   (5) 

Here, lf and lr are the distances from the center of 
gravity to the front and rear axles, both typically around 
1.25 m, and l = lf +lr is the wheelbase. The sideslip angles 

f and r at the front and rear axles can be expressed in 
terms of the sideslip angle at the center of mass , yaw 
rate r, and vehicle speed V as follows:  

 

                (6) 

                (7) 

 
Using these relationships, Newton's law for linear 

motion provides the lateral force balance. The lateral 
acceleration is expressed as , which leads to 

 
 .           (8) 

 
Newton’s law for rotational motion around the center 

of gravity uses the yaw moment of inertia Iz[1]:  
 

      (9) 
 
This inertia is often represented by the dimensionless 
“dynamic index[2]” kN2, where kN is the yaw radius 
ratio[1]. Typical values for kN2 and kN are 1. Using Eq. 
(9) gives Newton's law for rotational motion: 
 

                (10) 
 

Equations (1), (8), and (10) can be combined to yield 
the fourth-order characteristic equation: 
 

(11) 
 

                           (12) 

 

       (13) 

 

                       (14) 

 

                      (15) 

 
Equations (12) and (14) are approximated using the 
relations  and .  
   The factorability of Eq. (11) depends on certain 
conditions[3]. These conditions are governed by the 
dimensionless steering system inertia[4], IsN, defined as: 
 

             (16) 
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When IsN >1/6, the system may exhibit instability[5]. In 
such cases, ensuring system stability becomes the 
primary design objective, and the eigenvalues of the 
system are of secondary importance. Conversely, when 
IsN <1/6, instability does not occur[5], and the 
responsiveness (determined by the eigenvalues) 
becomes the principal concern. This paper focuses solely 
on the case where IsN <1/6.  
 
3 Conventional Procedure for Eigenvalue 
Formulation 

This section outlines the previously proposed three-
step approach, which yields compact eigenvalue 
formulas with practical accuracy despite the complexity 
of the original fourth-order equation. 
 
3.1. Exact Characteristic Equation under Simplified 
Conditions 

Substituting Cf= Cr =C and kN=1 into Eqs. (11)–(15) 
allows the equation to be factorized exactly[6]:  
 

 

(17) 

 
Assuming , applying the Maclaurin expansion 
with respect to IsN yields:  
 

(18) 

 
3.2. Hypothetical Characteristic Equation under 
General Conditions 

This result suggests a hypothetical characteristic 
equation for the general case where Cf Cr[1]. The first 
bracket in the factored form includes the design 
parameters of the steering system, such as Is , and IsN, 
while the second bracket reflects vehicle-side 
parameters. Therefore, the characteristic equation can 
be hypothetically written as:  
 

(19) 

 
To generalize the formulation beyond kN=1, the 

coefficient of s1 in the first bracket is assumed by 
referencing the case without steering system dynamics, 
which gives a term of (Cf + Cr)/(kNV). Thus, it is 
reasonable to define[1]: 
 

(20) 

 
To maintain consistency in format between the two 
brackets, the explicit appearance of IsN inside the round 
brackets is eliminated. 

At this stage, the errors in the absolute value of the 
eigen-frequency compared with the numerical solution 
remain below 10%, while the error in fast responses 
(real parts) are below 1%. 
 
3.3. Correction by Coefficient Matching 

A more accurate formula can be obtained by 
introducing a correction term to Eq. (19)[1]. Adding 
small correction terms  to Eq. (19) gives: 
  

 

(21) 

 
Expanding this equation and eliminating products of 
correction terms, then comparing the result with Eqs. 
(11)–(15), allows the correction terms to be determined 
as: 
 

(22) 
 

(23) 
 
Therefore, the eigenvalues are defined as follows: 
  

        (24) 

                          (25) 

 

       (26) 
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             (27) 

                         (28) 

 

           (29) 

 
Here, s is the natural frequency of the steering system, 

s s represents its fast response, b is the natural 
frequency of the vehicle system excluding the steering 
system, and b b is the fast response of the vehicle 
system. 

Comparing these frequencies with numerical 
simulation results shows a maximum error of only 1%[1]. 
Thus, the derived formulas are compact yet sufficiently 
accurate for practical design. However, since the 
derivation relies on intuitive steps, some engineers may 
find the justification insufficiently rigorous.  
 
4 New Procedure for Eigenvalue Formulation 

While the exact solution to the characteristic 
equation becomes overly complex, practical applications 
often require approximate solutions. Such 
approximations inherently involve assumptions. This 
chapter presents a new derivation procedure that relies 
solely on a widely recognized assumption and uses 
algebraic operations to derive the eigenvalue formulas 
deductively.  
 
4.1. Assumption 

This study, therefore, assumes that both  and b 

are independent of vehicle speed. Numerical studies 
have shown that the natural frequencies of both the 
steering system and the vehicle system remain nearly 
constant regardless of vehicle speed[7]. This observation 
is consistent with the absence of V  in Eqs. (24) and 
(27). This assumption enables the use of any 
hypothetical vehicle speed in the derivation of the 
natural frequencies.  
 
4.2. New Derivation of Natural Frequencies 

The assumption in the previous section allows the 
derivation of  and b under the hypothetical condition 
of infinite vehicle speed. Substituting Eq. (16) and V=  
into Eq. (11) allows us to describe:  

 

 (30) 
 
Substituting s2=- 2 into Eq. (30) and solving for 

2 yields 
 

 

.(31) 

 
Given the assumption IsN<1/6 introduced in Chapter 

2, applying the Maclaurin expansion with respect to IsN 
yields 
 

(32) 

 

.            (33) 

 
These natural frequencies are nearly identical to those 
obtained in the previous chapter. Since the typical value 
of kN is 1 and the condition IsN <1/6 holds, Eq. (32) is 
approximately equal to Eq. (24), and similarly, Eq. (33) 
is approximately equal to Eq. (27). 

These formulas can also be obtained by directly 
substituting IsN =0 under the assumption IsN <1/6. 
 

        (34) 

      (Repeated) (24) 

           (Repeated)  (25) 

 

   (Repeated) (27) 

                (Repeated)  (28) 
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4.3. New Derivation of Responsiveness 
The characteristic equations of the steering system 

and the vehicle system, treated independently, can be 
written as: 
  

             (35) 
 

             (36) 
 
Multiplying Eqs. (35) and (36) yields: 
 

   (37) 
 
Expanding Eq. (37) and subtracting Eq. (11) gives the 
residual:  
 

(38) 
 
Where 
 

      (39) 

 

                   (40) 

 

  

(41) 

 

                    (42) 

 
For Eq. (37) to serve as a high-accuracy 

approximation, it is necessary that D3 0, D2 0, D1 0, 
and D0 0. In particular, 2 s s and 2 b b  must be 
determined so that D3, D2, and D1 vanish. Note that D0 
does not include either 2 s s or 2 b b.  

Solving the pair of equations D3=0 and D2=0 for 2 s s 
and 2 b b gives:  
 
 
 

 

(43) 

 

 

(44) 

 
For simplicity, performing a Taylor expansion around 

“dynamic index” kN2=1 and substituting lf=lr=l/2l yields  
 

.              (45) 

 
Further, performing a Taylor expansion around “yaw 
radius coefficient” kN=1 obtains 
 

.         (Repeated)  (26) 

Similarly 

.         (Repeated)  (29) 

 
Solving other combinations such as D2=0 and D1=0, or 
D1=0 and D3=0, leads to the same results. Therefore, the 
responsiveness can also be expressed as Eqs. (26) and 
(29), confirming the consistency of the new formulation. 
 
5  Discussion 

The eigenvalue formulas presented in this study are 
derived deductively based on a single known empirical 
property, while all other steps rely on mathematical 
procedures. Since any approximate solution to the 
characteristic equation inevitably requires some 
assumptions, this study explicitly adopts one well-
established and physically consistent assumption: the 
natural frequencies are independent of vehicle speed. 
This assumption has been supported by previous 
research and numerical validation. 
   Understanding the logical steps in the derivation 
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helps clarify the conditions under which the formulas 
can be applied. As a result, engineers can use these 
formulas with confidence in designing the dynamic 
response of steering systems. In particular, interpreting 
the real parts of the eigenvalues as indicators of fast 
response enables the practical application of the 
formulas to achieve more responsive and precisely 
tuned steering behavior.  
 
6. Conclusion 

This study has proposed an intuitive and logically 
consistent method for deriving eigenvalue formulas for 
steering system dynamics. The derivation relies on only 
one known empirical assumption—namely, that the 
natural frequencies are independent of vehicle speed—
while all other steps follow deductive mathematical 
procedures. Because of the clarity of this process, the 
resulting formulas are not only compact and accurate 
but also allow engineers to understand their range of 
applicability. 

The formulas derived in this study are expected to 
contribute to the design of more responsive steering 
systems. Most of the references cited in this paper are 
authored by the present author. This is due to the fact 
that research in this particular field remains limited. 
The content of this paper is intended to be appropriately 
referenced in the forthcoming English-language book, 
tentatively titled Pragmatic Vehicle Dynamics: 
Designing Engaging Handling, to be published by an 
international publisher.  
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